Violable and Inviolable OCP Effects on Linguistic Changes: Evidence from Verbal Inflections in Japanese

Shin-Ichiro Sano

Department of Linguistic Sciences
International Christian University

FAJL6
September 27, 2012 @ Humboldt Uni, Berlin
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Research Topic: OCP

OCP (Obligatory Contour Principle):
originally proposed based on the data in tone languages
"adjacent syllables may not be marked for the same tone."

(Leben 1973; Goldsmith 1976; McCarthy 1986)

更多一般情况下

OCP
bans representations in which identical specifications are adjacent
Dissimilarity effects, Similarity avoidance
Research Topic: OCP

segmental OCP effects:
- e.g. Consonant pairs in verb roots (Arabic)
 - *dadam*, *sasam* (see Pierrehumbert 1993; Frisch et al. 2004)

versions:
- e.g. total OCP (identical); OCP [place], [manner], [voice]

OCP effects — examined in a variety of languages and theoretical frameworks
 - (e.g. Meyers 1997; Padget 2002; Frisch et al. 2004)

OCP effects in Japanese

Phonology:
- Lyman’s Law in sequential voicing (Vance 1980; Ito & Mester 2003)
- co-occurrence restriction on consonants in Native Vocabulary (Kawahara et al. 2006)

Syntax: Double-ο constraint (see Hiraiwa 2010)
Outline

1 Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2 Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3 Data
 - Corpus
 - Summary of the Data

4 Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Categorical Effects & Gradient Effects of OCP

Extensively discussed in Frisch et al. (2004) based on the Arabic data.

- Consonant pairs in verb roots (2,674 items): $C_1VC_2VC_3$
- More similar \Rightarrow less frequent (but frequency is not zero)

OCP [Place] – categorical (inviolable) effects & gradient (violable) effects
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects

Shin-Ichiro Sano
Violable/Inviolable OCP Effects on Linguistic Change
Ongoing Linguistic Change

Examination of OCP Effects in Diachronic Contexts

Problems and Goals

Previous Studies:

- Examination of OCP effects – mostly synchronic aspects
 \(\Rightarrow\) diachronic aspects – understudied (Frisch 2004)

- Data source – e.g. dictionary
 \(\Rightarrow\) actual usage, spontaneous utterances – understudied

Goal: examination of OCP effects in diachronic contexts

1. Ongoing changes in Japanese verbal inflectional paradigm, based on spontaneous utterances in a large-scale corpus
2. Effects/functions of OCP:
 - categorical (inviolable) and/or gradient (violable)
 - trigger and/or blocker (Haraguchi 2008; Kawahara 2012)
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Verbs in Japanese – 2 types (Bloch 1946)

<table>
<thead>
<tr>
<th>Type</th>
<th>Stem-final Segment</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>consonant verbs</td>
<td>consonant</td>
<td>kak- ‘write,’ hasir- ‘run’</td>
</tr>
<tr>
<td>vowel verbs</td>
<td>vowel</td>
<td>mi- ‘see,’ tabe- ‘eat’</td>
</tr>
</tbody>
</table>

Causative/Potential forms in Japanese – allomorphy

<table>
<thead>
<tr>
<th>Violable/Inviolable OCP Effects on Linguistic Change</th>
</tr>
</thead>
</table>
Verbal Inflection

Causative forms

- **consonant verbs**: causative suffix – as(e)

 e.g. *kak-ase*, *hasir-ase*
 ‘let someone write/run’

- **vowel verbs**: causative suffix – sas(e)

 e.g. *mi-sase*, *tabe-sase*
 ‘let someone see/eat’

Potential forms

- **consonant verbs**: potential suffix – e

 e.g. *kak-e*
 ‘can write,’
 hasir-e
 ‘can run’

- **vowel verbs**: potential suffix – rare

 e.g. *mi-rare*
 ‘can see,’
 tabe-rare
 ‘can eat’
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
sa-Insertion

1. sa-Insertion: change in causative forms in Japanese
2. restricted to consonant verbs
 ⇒ attaching causative suffix \((\text{as}(e))\) to verb stems

Configuration of causative forms

- traditional causative: \(V - \text{ase}\)
- sa-Insertion (innovative variant): \(V - \text{asase}\)

Examples: \(kak-\text{asase}-ru\), \(hasir-\text{asase}-ru\) ‘let someone write/run’

\[\text{CSJ } \text{happyoo-o owar-\text{asase}-te-itadakimasu.}\]

‘Let me finish (my) presentation.’ (polite) (A04M0229)
ra-Deletion

1. *ra*-Deletion: change in potential forms in Japanese
2. restricted to *vowel verbs*
 - attaching potential suffix (*rare*) to verb stems

Configuration of potential forms

- traditional potential: \(V - \text{rare} \)
- *ra*-Deletion (innovative variant): \(V - \text{rare} \)

Examples:

- *tabe*-re-ru ‘can eat,’
 - CSJ oisii mono-ga **tabe**-re-ru.
 - delicious stuff-NOM eat-POT-NONPAST
 - ‘(We) can eat delicious foods.’
 - (S00M0002)

- *ko*-re-ru ‘can come,’
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Corpus of Spontaneous Japanese (CSJ)

A large-scale spontaneous speech corpus of Japanese

(Kokuritsu Kokugo Kenkyuujo 2008)

- **Size**: 3,302 speech samples (662 hours, 7.5 million words)
- **Organization**: APS (formal) / SPS (casual)
- **Rich annotations**:
 - speaker attributes, characteristics of each speech
 (e.g. style, nervousness, spontaneity)
 - detailed analysis of external factors
 (e.g. style, gender, socioeconomic background)
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Overall Distribution

- **Sampling**: every utterance in CSJ \Rightarrow 9,698 tokens

- **Variable – innovative/traditional**
 e.g. *kak-asase-*/*kak-ase*, *mi-re/mi-rare*

<table>
<thead>
<tr>
<th></th>
<th>Innovative</th>
<th>Traditional</th>
<th>Prob. of innovative forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>causative</td>
<td>42 (sa-Insertion)</td>
<td>1,498</td>
<td>2.73%</td>
</tr>
<tr>
<td>potential</td>
<td>543 (ra-Deletion)</td>
<td>7,615</td>
<td>6.66%</td>
</tr>
</tbody>
</table>
Chronological Transition of Variable Forms

Figure 1. Chronological changes in prob. of *ra*-Deletion and *sa*-Insertion

Order of the change: *ra*-Deletion ⇒ *sa*-Insertion

- *sa*-Insertion – beginning
- *ra*-Deletion – intermediate stage
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Method

• Pair-wise comparison of segmental similarity in sequences of verb stems and suffixes

• Degree of similarity – # of totally identical segments
 (each segment – totally identical OR not)

 \[\Downarrow\]

 compare the probabilities of innovative forms differing in the degree of similarity

 Forms compared should be in the same inflectional paradigm.
 e.g. *causative & potential

• **Domain of similarity** – local at moraic level (e.g. \(C_iV_j-C_iV_j\))
If OCP is at work in the ongoing linguistic changes . . .

Consequences

Adjacent **CV sequences** in verb stems & suffixes – more similar

Probabilities of **innovative forms** – lower (violable, gradient) or zero (inviolable, categorical)
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Categorical Effect I

Type of verb stem in sa-Insertion

- **Sa-Insertion** – restricted to consonant verbs
 - i.e. **no sa-Insertion in vowel verbs** **WHY?**

 - Causative suffix for vowel verbs: sas(e)
 - e.g. *mi-sase*, *tabe-sase* – ‘let someone see/eat’
 - If sa-Inserted . . .
 - e.g. *mi-sasase*, *tabe-sasase*
 - **Sa-Insertion in vowel verbs**
 - ⇒ obligatorily involves the sequence sasa

No sa-Insertion in vowel verbs ⇒ to block sasa sequences

categorical effects & blocking function (total identity)

Shin-Ichiro Sano

Violable/Inviolable OCP Effects on Linguistic Change
Categorical Effect II

Stem-final consonant in *sa*-Insertion

- Verb stems with final $s \Rightarrow sasa$ sequences (adjacent identical CVs)

 e.g. $toba-s-asase-$, $arawa-s-asase-$ – ‘let someone fly/express’

- Other stems are less similar

 e.g. $kak-asase-$, $hasir-asase-$ – ‘let someone write/run’

- Probability of *sa*-Insertion:

 s-final stems (identical) < other stems (less similar)?
Categorical Effect II

Figure 2. Probability of *sa*-Insertion by stem-final consonant (fisher, $p<0.05$)

No *sa*-Insertion in verb stems with final *s* ⇒ to block *sasa* sequences (total identity)

categorical effects & blocking function
Outline

1. Background
 - Research Topic: OCP
 - Categorical Effects & Gradient Effects of OCP
 - Problems and Goals

2. Ongoing Linguistic Change
 - Verbal Inflections in Japanese
 - Variable Phenomena

3. Data
 - Corpus
 - Summary of the Data

4. Examination of OCP Effects in Diachronic Contexts
 - Method
 - Categorical Effects
 - Gradient Effects
Stem-final CVs in *ra*-Deletion

verb stems with final ri/re

- Traditional potential \Rightarrow *rVr*are* sequences *(three identical consonants)*
 e.g. *kari*-rare-, *ire*-rare* ‘can borrow/insert’*

- *Ra*-Deletion \Rightarrow *rVr*e* sequences *(two identical consonants)*
 e.g. *kari*-re-, *ire*-re*

- Other stems are less similar
 e.g. *mi*-(*ra*)re-, *tabe*-(*ra*)re* ‘can see/eat’*
Gradient Effect I

Similarity can be reduced by *ra*-Deletion
Degree of similarity: *ri/re*-final stems (with extra *r*) > other stems

Probability of *ra*-Deletion:
ri/re-final stems (more similar) > other stems (less similar)?

Figure 3. Probability of *ra*-Deletion by stem-final CVs ($\chi^2(2)=31.32, p<0.01$)
Gradient Effect I

- **ri**-final stems – higher probability of **ra**-Deletion
 - to reduce the degree of similarity
 - (# of segments with identity)

 But

- **re**-final stems – same or lower probability of **ra**-Deletion
 - If **re**-final stems are **ra**-Deleted . . .
 - ⇒ **rere** sequences (e.g. **ire-re**-)
 - \[\downarrow\]
 - to avoid the total identity, **ra**-Deletion does not apply.

gradient effects & triggering/blocking function
Gradient Effect II

Following constituent in *ra*-Deletion

- Some following constituents – initial *r*
 - e.g. *mi-*rare-*ru* ‘can see (nonpast)’
 - *tabe-*rare-*reba* ‘can eat (conditional)’

- following constituents with initial *r*
 - ⇒ enhance the similarity by adding extra *r* (*rarerV*)

- other constituents – no contribution
 - e.g. *-nai, -masu, -te, -tari, -tara, -soo*

- Probability of *ra*-Deletion:
 - *r*-initial constituents > other constituents?
-ru, -reba – higher probability of ra-Deletion
⇒ to reduce the similarity
- reba > -ru
Gradient Effect II

- \textit{-reba} > -\textit{ru}
 -\textit{reba} renders the sequence \textit{rere}
 e.g. \textit{mi-rare-reba}, (cf. \textit{mi-rare-ru})

- Similarity in -\textit{reba} is higher than in -\textit{ru}
 ⇒ more likely to trigger ra-Deletion

\textbf{gradient effects & triggering function}
Conjugation type of verbs in *ra*-Deletion

Vowel verbs – *i*-stem (upper uni-grade) & *e*-stem (lower uni-grade)

i-stem verbs
- Traditional potential: **Ci-rare**
 - e.g. *mi-rare*, *kari-rare* – ‘can see/borrow’

Ra-Deletion: **Ci-re**
- e.g. *mi-re*, *kari-re* – ‘can see/borrow’

No vowel co-occurrence in traditional potential & *ra*-Deletion
Conjugation type of verbs in *ra*-Deletion

Vowel verbs – *i*-stem (upper uni-grade) & *e*-stem (lower uni-grade)

e-stem verbs
- Traditional potential: **Ce-rare**
 - e.g. *tabe*-rare-, *age*-rare- ‘can eat/raise’
- *Ra*-Deletion: **Ce-re**
 - e.g. *tabe*-re-, *age*-re- ‘can eat/raise’

Vowel co-occurrence in *ra*-Deletion: **e-re
(traditional potential – *e* and *re* are not in adjacent syllables **e-rare**)

In *e*-stem verbs, *ra*-Deletion can enhance the similarity \(\Rightarrow\) blocked?

\[\downarrow\]

probability of *ra*-Deletion: *i*-stem verbs > *e*-stem verbs?
Figure 5. Probability of *ra*-Deletion by conjugation type of verbs ($\chi^2(1)=74.79$, $p<0.01$)

- *e*-stem verbs – lower probability of *ra*-Deletion
 - to avoid vowel co-occurrence *[high] & *[high]*
- *height dissimilation* – cross-linguistically uncommon

(İto 1986; Suzuki 1998)

gradient effects & blocking function
OCP effects & development of the change

Figure 6. Chronological changes in the prob. of *ra*-Deletion (*i*-stem/*e*-stem)

- probability of *ra*-Deletion:
 - *i*-stem > *e*-stem in every time-period (except for 1910s and 1980s)

- synchronic restriction – consistent
 \[\Rightarrow\] synchronic pattern – accumulate diachronically
Conclusion

- Two types of OCP effects in diachronic contexts
- Ongoing changes in Japanese verbal inflectional paradigm

Diachronic pattern

Adjacent CV sequences in verb stems & suffixes – more similar

Probabilities of innovative forms – lower or zero
Conclusion

Summary

1. OCP is active in shaping novel verbal inflectional forms.
2. OCP is at work synchronically & *diachronically*.
3. OCP effects: strong version (inviolable, categorical) weak version (violable, gradient)
4. OCP functions as a *blocker* and a *trigger*.
5. Domain of OCP: within lexical items & across morphological boundaries

Synchronic restriction ➔ Diachronic patterns ➔ Lexicon/Grammar
Conclusion

Lexical Diffusion (Wang 1969, among others)

- progress of some changes differs according to lexical items
- causes for lexical diffusion
 - e.g. word frequency (Bybee 2002 et seq., Phillips 2006, Sano 2012)

- OCP \Rightarrow selectional restriction on lexical items
 \Rightarrow OCP – also a cause for lexical diffusion
Thank you!
References I

Frisch, Stefan. (2004) Language processing and segmental OCP effects. In Bruce Hayes, Robert Kirchner, and Donca Steriade (eds.), Phonetically-Based Phonology, Cambridge University Press.

References II

References IV

